skip to primary navigationskip to content
 

CIMR-generated tools used in a new structural biology study of coronavirus (2019-nCoV)

last modified Feb 20, 2020 12:17 PM

A range of different research expertise is needed in the global response to the ongoing 2019-nCoV outbreak. This week, researchers from the University of Texas at Austin and the (US) National Institutes of Health published in Science a detailed structure of the coronaviral Spike glycoprotein, 2019-nCoV S. This protein is found on the outside of the virus and is thought to enable it to enter and infect its human host cells. 2019-nCoV S is therefore a key target for the development of vaccines and therapeutic antibodies, and efforts to develop such treatment approaches will be facilitated greatly by a detailed molecular understanding of its structure and mechanisms of action.
In recent years there has been considerable progress in the technologies available to determining protein structure, particularly the advent of cryo-electron microscopy, or cryo-EM, which is significantly changing the rate at which new structures can be solved. Accompanying this is the need for software to provide accurate interpretation of highly complex structural data through modelling algorithms. At the CIMR, Professor Randy Read’s group has provided key components to software platforms that have been widely-used in generating tens of thousands of published protein structures. Both ISOLDE (developed by Dr Tristan Croll) and the PHENIX platform to which the Read lab has contributed were cited in the recent 2019-nCOV S structure paper, helping to enable and accelerate the rapid generation of these important data.